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ACCELERATED TEMPLATE MATCHING USING LOCAL 

STATISTICS AND FOURIER TRANSFORMS 
 

F. WEINHAUS1 

 

Abstract – This paper presents a method to accelerate correlation-based 

image template matching using local statistics that are computed by 

Fourier transform cross correlation. This approach is applicable to 

several different metrics.  The concept is based upon equivalent spatial 

and frequency domain principles. Each metric is computed completely 

in the frequency domain using Discrete Fourier Transforms. Timing 

results are shown to be independent of the size of the smaller template 

image. 

 

 

1. INTRODUCTION 
Image registration is an operation that aligns the pixels of one image to the 

corresponding pixels of another image. There are many goals that are typical 

of image registration. Some of these include: detecting changes between 

images (as in vegetation analysis in remote sensing and industrial parts 

quality control), aligning multiple images prior to creating a mosaic (in 

remote sensing) and looking for similar images (for content based image 

retrieval and fingerprint analysis). Numerous approaches have been 

proposed, which include:  pixel-based template matching, feature matching, 
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area matching, shape matching, transform analysis matching and heuristics 

matching. Detailed descriptions can be found in numerous books and survey 

papers [1]-[7]. 

 

2. BACKGROUND 
This paper focuses on pixel-based template matching via correlation metrics. 

This is an old and traditional method where a small image is moved one 

pixel at a time over a larger image. For each shift position, a metric is 

computed pixel by pixel between the small image and the correspondingly 

sized region of the larger image. The position where the metric value is 

largest or smallest, depending upon the metric, identifies the shift position 

for which the small image best matches with the large image.  

 

One of the most common metrics is the normalized cross correlation (NCC), 

which can be expressed in the spatial domain as 

 

€ 

NCC(h,k) =

S(i, j) −MS( )
i, j
∑ (L(i + h, j + k) −ML )( )

S(i, j) −MS( )2 L(i + h, j + k) −ML( )2
i, j
∑

i, j
∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

0.5 .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (1) 

 

Here S(i,j) is the small image, L(i,j) is the large image, MS is the mean of the 

small image, ML ≡ ML(h,k) is the mean of the subsection of the large image 

at offset (h,k), N is the number of pixels in the small image and NCC(h,k) is 

the normalized cross correlation metric at offset (h,k). The numerator is 

essentially a simple cross correlation, but using a zero mean small image and 

zero mean subsections of the larger image. The mean subtraction mitigates 
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brightness differences between the two images. The denominator is included 

so that the resulting correlation metric ranges from -1 to 1.  A perfect match 

has a value of 1. 

 

Normalized cross correlation, as described by equation (1), is 

computationally intensive and slow. Part of the complexity has to do with 

evaluating the numerator correlation in the spatial domain when the template 

image is large. The other aspect that adds to the complexity is the 

computation of the mean and standard deviation of each subsection of the 

larger image.  

 

A number of techniques have been used to speed up these computations. A 

simple approach uses a coarse to fine search strategy. The images are 

reduced in size and the correlation metric is evaluated and the best match 

found. Then the matching is repeated at full resolution, but only in the 

neighborhood of the coarse match location [8][9].  A variation on this theme 

involves pyramidal search techniques [10][11].  

 

The Bounded Partial Correlation method uses a sufficient condition test at 

each shift position to rapidly skip most of the expensive calculations 

involved in the NCC scores at those points that cannot improve the best 

score found so far [12].  

 

Another approach skips the normalization and computes the simple cross 

correlation, C(h,j), using forward and inverse Fourier transforms. A basic 

principle of Fourier transforms is that convolution in the spatial domain is 

equivalent to multiplication in the frequency domain. Likewise, correlation 
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in the spatial domain is equivalent to multiplication in the frequency domain 

using the complex conjugate of one of the transformed images.  

 

For simple cross correlation, the Fourier transform procedure is as follows. 

First pad the smaller image with zeros at the bottom and right sides to fill it 

out to the size of the larger image. Next, apply the Fourier transform to the 

both the padded small image and the large image. Then, take the complex 

conjugate of one of them and multiply the two together. Finally, take the 

inverse Fourier transform. This process is much faster than doing the un-

normalized correlation in the spatial domain. This spatial and frequency 

domain equivalents may be expressed as 

 

€ 

C(h, j) = S(i, j)
i, j
∑ (L(i + h, j + k) = F −1 F *(S)F(L){ } ≡ S⊗ L ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (2)	  

	  

where F is the Fourier transform, F* is the complex conjugate of the Fourier 

transform, F-1 is the inverse Fourier transform and S is padded with zeros to 

the same size as the large image. A⊗B, is defined as a shorthand notation for 

the forward and inverse Fourier transform cross correlation process between 

any two images A and B. 2 This nomenclature will be used extensively in the 

subsequent sections. 

 

If the Fourier transforms of the two images are divided by their magnitudes 

as a form of normalization, then the inverse Fourier transform of the product 

is called phase correlation [13].  The downside here is that it bypasses the 
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normalization,	  (1/total	  pixels)	  is	  computed	  in	  the	  inverse	  Fourier	  Transform	  
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proper normalization. Furthermore, it is based only on phase information 

and is insensitive to changes in the image’s intensity. 

 

Lewis [14][15] used a mixed spatial and Fourier transform approach to 

compute the NCC. He pointed out that (1) can be expressed as 

 

€ 

NCC(h,k) =

S(i, j) −MS( )
i, j
∑ L(i + h, j + k)( ) −ML S(i, j) −MS( )

i, j
∑

S(i, j) −MS( )2 L(i + h, j + k) −ML( )2
i, j
∑

i, j
∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

0.5 .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (3) 

 

Furthermore, he noted that the second term in the numerator is zero, because 

ΣS(i,j) = ΣMS = NMS. This allowed him to compute the numerator with the 

Fourier transform cross correlation as in (2) after subtracting the mean from 

the small image. On the other hand, he computed the large image’s 

denominator term in the spatial domain using summed area tables [16] to 

speed up that part of the computation. The summed area tables were used to 

evaluate the mean and mean squared of each subsection of the large image 

very quickly. 

 

Lastly, others have used variations the Lewis technique using summed area 

tables to compute the denominator. But they have also computed the 

numerator using summed area tables [17] or with a weighted sum of basis 

functions[18]. 

 

The method described in the following sections computes the NCC and other 

metrics using Fourier transform correlations alone. 



Page 6 

 

3. LOCAL STATISTICS 
In (3), the two denominator terms can be separate and by definition are just 

the standard deviation of the small image, σS, and the standard deviation of 

the large image’s subsections, σL ≡ σL(h,k). Therefore, (3) may be 

expressed as 

 

€ 

NCC(h,k) =

ʹ′ S (i, j) L(i + h, j + k)( )
i, j
∑

Nσ Sσ L

,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4) 

 

where Sʹ(i,j) ≡ S(i,j) - MS.  

 

In the spatial domain, the local sums of L at each offset position of the small 

image relative to the large image can be computed as a correlation of the 

large image with a rectangular kernel, U, the size of the small image having 

unit weights at each element. The mean values, ML are then achieved by 

dividing the sums by N. The important factor here is that the local mean 

image is achieved from just a correlation with a uniform kernel of unit value 

weights. This can be expressed as 

 

€ 

ML (h,k) =
1
N
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ U(i, j)L(i + h, j + k)
i, j
∑ .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (5) 

 

As mentioned earlier, correlation in the spatial domain is equivalent to 

multiplication in the frequency domain (with one Fourier transform term 

conjugated). The corresponding frequency domain image, U, is then just an 
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image the size of the small image with all pixel values equal to unity, but 

padded with zeroes at the bottom and right sides to the size of the large 

image. This is in analogy to the padding process used when cross correlating 

the small and large images using Fourier transforms as described earlier. 

Therefore, the Fourier transform analogy to (5) is just  

 

€ 

ML (h,k) = ML =
1
N
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ U ⊗ L( ) .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (6)	  

 

For the standard deviation, σL, one may recast it in variance form as  

€ 

σ L (h,k) =σ L =
1
N

L(i + h, j + k)2
i, j
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −

1
N

L(i + h, j + k)
i, j
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

0.5

.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (7)	  

	  

By definition, the standard deviation of x is just the square root of the 

variance of x, which is equal to the mean of the square of x minus the square 

of the mean of x.  Therefore, the standard deviation of each subsection of L 

can be expressed, using the shorthand notation for the Fourier transform 

correlation process, as 

 

€ 

σ L (h,k) =σ L =
(U ⊗ L2)

N
−
(U ⊗ L)2

N 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0.5

.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (8)	  

 

4. CORRELATION METRICS 
In this section, several different correlation metrics will be expressed using 

the Fourier transform correlation method. 

 
4.1 Normalized Cross Correlation 
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Equations (6) and (8) may be substituted into equation (4) to give the final 

Fourier transform format of the Normalized Cross Correlation for a 

grayscale image. 

 

€ 

NCC(h,k) =
ʹ′ S ⊗ L

σ S N(U ⊗ L2) − (U ⊗ L)2{ }
0.5 .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (9)	  

	  

Equation (9) shows that the normalized cross correlation can be evaluated 

using only 3 simple correlations via Fourier transforms. For color images, 

either the images are converted to grayscale first or the correlation is 

performed on each color channel and the results combined. This author first 

used this approach3 in a template matching study of pairs of images where 

one image was a photograph and the other was a synthetic thermal image. 

Test condition variations included different thermal wavelengths, lighting 

conditions and noise levels [19].  

 

Sun, et. al. [20] and later Papamakarios [21] used a similar local statistics 

method to perform normalized cross correlation solely using Fourier 

transforms. However, they reduced the computational complexity to what 

they called 2.5 FFTs. Their approach combined L and L2 into one complex 

expression, (L+iL2), before applying a forward Fourier transform, F(L+iL2), 

and then recovered the separate correlations from  

F-1(U*L) + iF-1(U*L2). 

 

4.2 Root Mean Squared Error 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  Technique	  only	  reported	  verbally	  at	  the	  conference	  presentation	  
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For a grayscale image, the root mean squared error metric may be expressed 

as 

 

€ 

RMSE =
1
N

S(i, j) − L(i + h, j + k)( )
i, j
∑

2⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

0.5

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (10)	  

 

or with expansion as 

 

€ 

RMSE =
1
N

S2(i, j) − 2S(i, j)L(i + h, j + k) + L2(i + h, j + k)( )
i, j
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

0.5

.	  	  	  	  	  	  	  	  	  	  	  (11) 

 

Since the small image is independent of (h,k), its squared sum is a constant. 

So, one may fill out a new small sized image, T, with uniform values of this 

sum and then pad it with zeroes to the size of the larger image. Then, (11) 

may be converted to Fourier transform correlation form as 

 

€ 

RMSE =
1
N

T − 2(S⊗ L) + (U ⊗ L2)( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

0.5

.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (12)	  

 

For a color image, the argument inside the radical would be evaluated for 

each channel, added together and divided by the number of channels. The 

RMSE metric is unbounded and a perfect match has a score of 0. 

 

4.3 Dot Product Correlation 

When the two images are dissimilar in sensors or lighting, such as the case 

in [19], it becomes advantageous to use the intensity values of edge-

extracted images rather than the raw image values. Either of the above two 
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metrics may be used in this case. However, if edge directions are also 

extracted, then a dot product like metric may provide better results. Such a 

metric may be expressed as 

 

€ 

DPC =
SX (i, j)LX (i + h, j + k) + SY (i, j)LY (i + h, j + k)

NSM (i, j)LM (i + h, j + k)i, j
∑ ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (13) 

 

where subscripts X,Y, M correspond to the X gradient direction image, the Y 

gradient direction image and the gradient magnitude image. The latter is 

simply the square root of the sum of squares of the two gradient direction 

images. Each gradient derivative component may be divided by its 

respective magnitude. This will be indicated below with an apostrophe. If 

the resulting small images are padded with zeros to the size of the large 

image, then (13) may be converted to Fourier transform correlation form as 

 

€ 

DPC =
1
N ʹ′ S X ⊗ ʹ′ L X + ʹ′ S Y ⊗ ʹ′ L Y( ).	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (14) 

 

A variation of this dot product correlation metric was also used in [19]. The 

DPC metric has a range of values between -1 and 1 and a perfect match has 

a value of 1. 

  

5. RESULTS 
Equations (9), (12) and (14) were each implement as Unix bash shell scripts 

using the open source, cross-platform, image processing suite called 

Imagemagick [22]. It utilizes the open source FFTW [23] package to 

perform Fourier transforms. The Imagemagick suite includes brute-force 
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spatial domain normalized cross correlation and root mean squared error 

metrics for template matching. A 2010 vintage 2.66 GHz Intel Core 2 Duo 

Mac Mini was used for testing.  Imagemagick, which can be configured for 

multi-threaded operation via OpenMP, was limited to one thread for most of 

these tests.  

 

Figures 1 show the metric surfaces computed with NCC, RMSE and DPC 

correlation methods, respectively. The large image had dimensions of 

256x256 and the small image was a 128x128 subsection located at 

coordinates (64,52). Each metric successfully found the correct match 

location. The NCC score was 1.00, the RMSE score was 0.00 and the DPC 

score was 1.00 to two decimal places. No tests were performed in this study 

for robustness against noise, image distortions or different images. For the 

RMSE surface, the image in Figure 1 has been inverted to show bright 

values for the best match.  The Sobel edge detector was used to create the X 

and Y edge directional derivatives needed for the DPC. The DPC metric 

surface shows only a very small white dot at the correct locations, whereas 

the surfaces for the other methods have a wider peak. 
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Figure 1  (a) 256x256 large image, (b) 128x128 small image, (c) NCC 

metric surface, (d) RMSE metric surface and (e) DPC metric image. 

 

Tests, also, were performed to compare the run-times of both the brute force 

(1) and the Fourier transform (9) approaches for the NCC metric. 

Comparisons were made for a 500x500 color large image and various square 

sizes for the small image ranging from 10x10 to 450x450. The resulting 

CPU times are shown in Table 1 along with their ratios, which characterize 

the speed-up factor associated with the frequency domain method compared 

to the spatial domain method. The last columns shows the estimated ratio 

between the brute force method and Lewis’s method, where the denominator 

is computed with summed area tables and the numerator is computed with 

the Fourier transform evaluation of the cross correlation. The estimates are 

based upon the computational burden analysis presented in Lewis’s papers 

and summarized in Table 2. The estimates are based solely on counts of 
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additions, subtractions and multiplications, each weighted equally. The 

estimates do not take into account memory and other limiting factors. The 

computation of the Fourier transform cross correlation is also subject to type 

of radix approach used in actual implementation. Consequently, these 

estimated speed-up factors should be considered with liberal uncertainty. 

Nevertheless, Table 1 shows that substantial performance improvements can 

be achieved by Lewis’s method. However, the method proposed in this study 

using Fourier transforms to evaluate both the numerator and denominator 

would appear to be even faster and independent of the size of the smaller 

image.  Table 3 shows the same data, but for dual threading.  Table 4 show 

the same kind of data, but RMSE matching. 

 

Table 1.  Single threaded comparison of run times between spatial and 

Fourier domain normalized cross correlation approaches. 
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Table 2.  Estimated operation counts between brute force spatial domain and 

Lewis’ method. This is the basis of the numbers in the last column of Table 

1. 

 

 

 

 

 

 

 

 

 

Table 3. Double threaded comparison of run times between spatial and 

Fourier domain normalized cross correlation approaches. Only a slight gain 

in speed seems to be had between single and double threading. 
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Table 4. Single threaded comparison of run times between spatial and 

Fourier domain root mean squared error correlation approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSION 
This paper has presented a method of performing several types of 

correlation-based template matching, where all major computations are done 

in the Fourier Domain.  This approach has proved both efficient and flexible. 

Run times are one to two orders of magnitude faster than doing the same 

types of correlations in the spatial domain. 
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